Источник:
http://www.avalon.ru/HigherEducation/Wo ... echn11.htm
Рамы и материалы для их изготовления
Рама является одним из главных компонентов, определяющим ездовые качества велосипеда.
Материал, из которого изготавливаются рамы вызывает жаркие и продолжительные споры между фанатами велосипеда. Что лучше сталь, алюминий, титан или карбон? Какая конструкция лучше?
Для начала следует понять, что традиционная велосипедная рама, состоящая из двух треугольников весьма совершенная конструкция, результат более чем столетней истории развития велосипеда. Постоянные попытки радикально улучшить конструкцию рамы в конечном итоге ничем не заканчивались. И конструкторы снова и снова возвращались к
базовой конструкции, которая, таким образом, не претерпела существенных изменений за последние сто лет.
С годами улучшались материалы, совершенствовались технологии изготовления, что позволило радикально снизить вес и повысить прочность рам.
В конечном итоге свойства рамы определяются, как ее конструкцией, так и материалами, из которых она изготовлена.
Требования предъявляемые к раме весьма противоречивы. Она должна быть прочной и жесткой, гасить вибрации, но не деформироваться, и при этом иметь минимальный вес.
Материалы
Для начала мы кратко остановимся на механических свойствах основных материалов широко применяемых при изготовлении рам:
Сталь
Алюминиевые сплавы
Титановые сплавы
Углепластиковые композиты
-------------------------------------------------------------------------------------
Основные характеристики конструкционных материалов
-------------------------------------------------------------------------------------
Плотность. Масса единицы объема. Кг/м**3. В комментариях не нуждается.
Упругость (Модуль Юнга). Коэффициент пропорциональности в законе Гука для растяжения. Характеризует жесткость материала. Численно равен напряжению в образце, при котором он удлиняется в два раза. (Напряжение - сила на единицу площади поперечного сечения. Н/м**2. Н - Ньютон размерность силы в системе Си. Примерно равна силе тяжести на поверхности земли, действующей на тело массой 0.1 кг.)
Предел прочности (на разрыв). Tensile strength. Напряжение, при котором образец разрушается при растяжении. Н/м**2. Для большинства твердых тел он, естественно, меньше модуля упругости.
Предел текучести. Yield strength. Напряжение, при котором в образце возникают необратимые деформации
(пластические).
Относительное удлинение. Удлинение в процентах образца до его разрушения при растяжении. Для изготовления рам эта величина должна быть около 10%, для того чтобы рама, деформируясь, могла "подать сигнал", что скоро разрушиться. Материалы с относительным удлинением менее 5% имеют тенденцию разрушаться внезапно. Этот показатель не полностью характеризует характер разрушения, но достаточно информативен.
Предел выносливости. Максимальное напряжение, при котором образец выдерживает практически бесконечное количество циклов периодической нагрузки. Некоторые материалы не имеют такового. Например, большинство Al сплавов, в отличие от стали и титана. Это значит, что даже очень малая циклическая нагрузка рано или поздно приведет к разрушению образца.
Часто в качестве предела выносливости берут значение напряжения, при котором образец выдерживает не менее 10,000,000 (десять миллионов) циклов. При таком методе измерения Al будет иметь не нулевое значения предела выносливости.
Теперь можно посмотреть на параметры типичных материалов, используемых при производстве рам.
-------------------------------------------------------------------------------------
Сталь
-------------------------------------------------------------------------------------
Самой распространненной сталью, используемой при производстве рам является марка 4130. В просторечии стали такого типа называют CrMo (хроммоли - хроммолибдновыми). Мы не будем вдаваться в детали материаловедения, скажем только, что эта сталь содержит 0,3% C (углерода), 0,4% Mn (марганца), 1% Cr (хрома) и 0,15% Mo (молибдена), хорошо формуется и сваривается, и стоит относительно недорого.
Простые углеродистые стали (марка 1020) имеют значительно меньшую прочность (предел текучести и предел прочности), но и стоят гораздо дешевле легированных сталей. В производстве качественных рам не применяются. Используются они только для производства муляжей и макетов велосипедов
Сталь - традиционный материал. Технологии сварки и пайки его за последние сто лет дошли до совершенства. При этом, как сварка, так и пайка стали дает прочное и надежное соединение при самых простых и доступных технологиях. Не нужна атмосфера инертного газа, и спаять или сварить сталь можно в буквальном смысле в каждом гараже.
Относительное удлинение и предел усталости у стали большие, что говорит о том, что стальная рама внезапно не разрушится. Более того, еще до разрушения стали в ней образуются мелкие трещинки, которые не только заметны при визуальном осмотре, но и часто издают под нагрузкой характерные звуки.
К недостаткам стали следует отнести то, что она имеет высокую плотность, легко коррозирует (ржавеет). Коррозия в местах соединения труб изнутри (ее не увидишь) - частая причина разрушения стальных рам со стажем.
Сталь самый жесткий материал, но при этом и самый плотный. Отношение же жесткости к плотности у стали, Al и Ti примерно одинаковое. Поэтому стержни одинаковой длины и одинаковой жесткости из всех материалов будут весить примерно одинаково.
Но почему же Al рамы легче стальных? Рама делается не из стержней, а из труб. Жесткость трубы единичной длины пропорциональна модулю Юнга материала, и ее сечению (D**4-d**4)/D (D -внешний диаметр трубы, d - внутренний.). То есть из труб с одинаковой толщиной стенки, труба вдвое большего диаметра будет в восемь раз жестче.
Увеличению диаметра при сохранении толщины стенки препятствует эффект "пивной банки" ("жестянки"). Тонкостенная труба теряет устойчивость и легко сминается. Пределом отношения диаметра к толщине стенки в технике считается величина D/((D-d)/2))= 60-70.
Значительно меньшая плотность Al позволяет при большом внешнем диаметре сделать более толстой стенку, избежать эффекта "жестянки", при сохранении малого веса. Поэтому алюминиевые рамы такие "толстые" и "пузатые". Изображенная на этой фотографии алюминиевая труба при большей толщине стенки все равно легче стальной.
Качественные стальные рамы изготавливаются из бесшовных стальных труб, часто с переменной толщиной стенки (butted). Трубы с продольным швом или свитые из ленты используются для дешевых рам невысокого качества.
-------------------------------------------------------------------------------------
Алюминий
-------------------------------------------------------------------------------------
Типичными сплавами Al используемыми при производстве рам являются марки 6061, 7005. Производство рам из алюминиевых труб процесс сложный. После сварки одни сплавы требуют термообработки и искусственного старения (6061), другие только искусственного старения (7005), третьи деформационного уплотнения (5086) для восстановления микроструктуры материала. Коды после марки и обозначают эти процессы (7075-T6 или 2024-T4).
Заварить Al раму не только в гараже, но и в простейшей установке аргоновой сварки без потери прочности невозможно.
Из-за малого коэффициента относительного удлинения алюминиевая рама заметно не деформируется после сильных ударов. И вообще, Al разрушается внезапно, не проявляя заметных внешних признаков.
Алюминий подвержен коррозии, хотя и в меньшей степени, чем сталь, но тоже требует применения защитных покрытий (покраска, анодирование и т.д.).
Резьбовые соединения (да и соединения просто на трении) Al-Al, Al-Ti и Al-Сталь имеют свойство "прикипать" намертво. Никакой керосин и прогрев, как со сталью, не поможет. Поэтому соединения надо регулярно и вовремя разбирать, прочищать и смазывать консистентной смазкой.
Отсутствие предела выносливости (некоторые Al сплавы имеют такой предел, но он невелик) не означает, что такая рама быстро сломается. Кто-нибудь видел усеянные обломками алюминиевых рам велодорожки? Нет. Даже если сделать очень грубую прикидку получится, что срок службы Al деталей составляет годы. Например, предположим, что шатун сконструирован таким образом,
что при каждом обороте педалей в нем возникает напряжение равное пределу усталости для 10.000.000 циклов . Тогда 10.000.000 оборотов на средней передаче составит 50 тыс км пробега. (На самом деле этот расчет имеет мало общего с реальностью: с одной стороны, в жизни шатуны проектируют с гораздо большим запасом, с другой стороны, удары могут приводить к появлению остаточных деформаций и внутренних напряжений, что может радикально снизить усталостную прочность. Вблизи предела текучести материал имеет существенно меньшую выносливость.)
Проектируя алюминиевые рамы, конструкторы вынуждено делают большой запас по статической прочности, по сравнению со сталью (2-4 раза), чтобы уменьшить амплитуду деформаций применяют более жесткие трубы большого диаметра. При этом они стараются равномерно распределять напряжения по всей раме. Вот откуда эти дополнительные накладки на трубы в местах стыка с рулевой колонкой, например.
Именно вследствие борьбы с низкой усталостной прочностью алюминиевые рамы получаются у конструкторов очень жесткими и легче стальных всего (примерно) на четверть.
Низкая плотность алюминия - его самая сильная сторона. Однако, из-за плохой выносливости материала, вес рам получается не таким, каким бы мог быть. Конструкторы и материаловеды постоянно ищут решения этой проблемы. Возможно, скоро мы получим значительно более легкие и не менее долговечные алюминиевые рамы.
Итак. Какой главный плюс у алюминиевой рамы по сравнению со стальной? Меньший на 20%-25% вес. Жесткость же нельзя назвать преимуществом или недостатком. Все зависит от назначения рамы и веса велосипедиста.
Алюминиевая рама скорее всего не будет служить десятки лет, как стальная и починить ее в случае чего будет нельзя.
-------------------------------------------------------------------------------------
Титан
-------------------------------------------------------------------------------------
Материал окруженный легендами, имеющий репутацию магического. На самом деле те его свойства, благодаря которым он имеет такую репутацию для велорамы не являются критичными. Это его высокая химическая инертность (стойкость к кислотам, щелочам и т.п.) и способность не терять свойств при высоких температурах, а также очень высокое отношение предела прочности к плотности.
Относительное удлинение у титана самое большое из рассматриваемых нами материалов. Предел выносливости и предел прочности у титана практически как у стали. Титан не ржавеет, не требует покраски, царапается труднее стали и алюминия.
Все это делало бы его идеальным материалом для рамы, если бы не модуль упругости и плотность. Отношение жесткости к плотности у титана примерно такое же, как и у стали и алюминия. Для того, чтобы из титана сделать такую же жесткую, как и стальная, но весящую существенно меньше раму, пришлось бы сделать трубы большого диаметра с очень тонкими стенками, подверженными эффекту "жестянки".
Поэтому большинство производителей делает титановые рамы несколько более мягкими, чем стальные, отдавая приоритет весу. (Мало, кто готов был бы заплатить за титановую раму, которая бы весила лишь ненамного меньше, чем стальная, существенно большие деньги.) Для производства рам используются сплавы титана с Al алюминием и V ванадием. Распространенные сплавы: 3% Al, 2,5% V (3/2,5) и 6/4. Ti 6/4 имеет больший предел. Для производства рам используются сплавы титана с Al алюминием и V ванадием. Распространенные сплавы: 3% Al, 2,5% V (3/2,5) и 6/4. Ti 6/4 имеет больший предел
прочности, чем Ti 3/2,5, несколько меньший коэффициент удлинения. Ti 6/4 значительно труднее поддается механической обработке (он тверже), чем Ti 3/2,5, и, имея близкий к Ti 3/2,5 модуль Юнга, чаще используется для мелких деталей рамы - боночек для кабелей, "петухов" и т.п..
Значительно повышает предел текучести и прочности титана холодная обработка (деформационное уплотнение - CWSR - cold worked stress relieve), доводя их значения до уровня очень хороших сталей.
Для туризма относительная "мягкость" серийных титановых рам - это не главный недостаток. Но зато титановая рама практически вечная, и не боится суровых климатических условий.
К недостаткам титана следует отнести его высокую цену, которая может быть выше в 10-15 раз, чем у стали, сложность механической обработки и сварки.
Миф о том, что титан материал хрупкий, идет от того, что он с трудностями поддается механической обработке (резанию, полировке). Связано это с довольно высокой его твердостью. Резка титана требует специального инструмента и строгого соблюдения режимов. На самом деле после ударов титановая рама сначала сильно деформируется, подав сигнал хозяину, что ей приходит конец, и затем сломается.
Другое дело сварной шов. Малейшие примеси и нарушения режима сварки "отравляют" сварной шов, и он резко теряет прочность не изменяясь по внешнему виду. При этом разрушится такой шов внезапно. Поэтому качество сварки - вопрос номер один при выборе титановой рамы. Отсюда идет еще один миф о том, что титан разрушается внезапно.
Правильно спроектированная и сваренная титановая рама не разрушится от усталости. Отремонтировать же в "гаражных" условиях титановую раму весьма проблематично.
-------------------------------------------------------------------------------------
Углепластик (карбон)
-------------------------------------------------------------------------------------
Углепластики - это композитные материалы. Основу составляют нити из углерода, которые сами по себе имеют фантастические параметры: модуль Юнга, как у стали, плотность 1600 кг/м**3 (меньше алюминия). Однако сделать из них жесткую конструкцию задача непростая - нити работают только на растяжение.
Поэтому из нитей плетут многослойную трубу, в каждом слое нити ориентированы под своим углом. Скрепляется вся эта конструкция эпоксидными смолами, что дает более скромные итоговые показатели всей конструкции (см. таблицу).В результате получается труба с весовыми параметрами лучше, чем у алюминия. Углепластик - чемпион по весу. Посмотрите, карбоновая рама TREK, весит на 40% меньше стальной, и на 20% меньше алюминиевой.
В силу своей конструкции углепластики имеют выраженную анизотропию (разные свойства в разных направлениях). Поэтому конструкция трубы (расположение нитей в слоях, их количество) определяет свойства рамы в не меньшей степени, чем просто значения параметров материала и конструкция рамы.
Сравнивать углепластиковые рамы между собой и с рамами из других материалов, без учета особенностей всей конструкции в целом, не имеет смысла.
Абсолютно справедливо то, что на сегодняшний день углепластиковые рамы самые легкие.
Что касается того, что они самые жесткие - еще один распространенный миф. Вероятно, происхождение этого мифа следует искать в том, что эпоксидные смолы крошатся и колются от точечных воздействий.
Из углепластика изготавливаются совершенно разные по жесткости рамы. Все зависит от предназначения рамы и конструктивных решений. Можно смело утверждать, что многие углепластиковые рамы "мягче" алюминиевых. Углепластики не коррозируют.
Что же у них плохо?
Очень маленькое относительное удлинение. Хрупкость. Боязнь точечных ударов. Внезапное разрушение. Часто слабые места сочленений с петухами, кареткой и другими металлическими частями. Полная неремонтопригодность.
На сегодняшний день углепластиковые рамы стремительно дешевеют и становятся такими же доступными, как и алюминиевые.
Появились и, так называемые, термопласты, в которых углеродные нити скрепляются термопластичным материалом. Такие конструкции несколько менее хрупкие, чем эпоксидные.
-------------------------------------------------------------------------------------
Материал рамы для туризма
-------------------------------------------------------------------------------------
В целом при подборе серийной рамы можно ориентироваться на существующие спортивные традиции. В горных велосипедах преобладает алюминий - большие усилия при подъемах, а время гонки обычно не очень значительное, так что комфорт не так важен. На шоссе - алюминий только на этапах с очень тяжелыми подъемами, на остальных преобладает сталь. Углепластик ипользуется для разных целей - все зависит от конструкции рамы.Он хорош, когда важно экономить на
весе. Титан на шоссе хорош на дорогах с экстремально плохим покрытием (булыжник, например) и для очень протяженных марафонов (более 200 км за день).
Исходя из этого, вопрос с выбором материала рамы для многодневного туризма решается в пользу стальных или титановых рам. Для более агрессивного стиля езды подойдет и алюминий, особенно если велосипед оборудован амортизацинонной вилкой.
Однако это только грубые рекомендации. Многое зависит от веса велосипедиста, стиля его езды. Правильно подобранная и качественная рама хороша из любого материала.
-------------------------------------------------------------------------------------
Геометрия рамы для туризма
-------------------------------------------------------------------------------------
Что касается геометрии рамы, то для туризма важно иметь более стабильную раму, которая хорошо держит курс (большая продольная или курсовая устойчивость).
Здесь нам поможет большая величина смещения проекции оси втулки на землю от точки пересечения оси вращения вилки с землей, что при одинаковых вилках и колесах достигается большим наклоном рулевой колонки
(большим ее отклонением от вертикали). Чем больше это расстояния, тем лучше велосипед сохраняет курс. Вспомните колесики у пианино или у тележки в супермаркете. Они всегда сами встают в нужном направлении.
Однако, шоссейные модели соревновательного уровня имеют более "острое" управления, чем хотелось бы для туризма за счет приближения угла наклона вилки к вертикали и уменьшению величины этого смещения.
Также важно, чтобы после установки багажника и боковых сумок (рюкзака-"штанов") осталось достаточно места для пятки.